OVERTURE: Object-Oriented Tools for Solving CFD and
Combustion Problems *

David L. Brown and William D. Henshaw
Scientific Computing Group CIC-19
Computing, Information, and Communications Division
Los Alamos NM, USA, 87545
{dlb,henshaw }@lanl.gov

Keywords: differential equation solvers, hydrodynamics, object-oriented frameworks, computer software.

ABSTRACT

The QOverture Framework is an object-oriented envi-
ronment for solving PDEs on serial and parallel ar-
chitectures. It is a collection of C++ libraries that
enables the use of finite difference and finite volume
methods at a level that hides the details of the associ-
ated data structures, as well as the details of the par-
allel implementation. It is based on the A++/P++
array class library and is designed for solving prob-
lems on a structured grid or a collection of struc-
tured grids. In particular, it can use curvilinear grids,
adaptive mesh refinement and the composite overlap-
ping grid method to represent problems with complex
moving geometry.

INTRODUCTION

The Owerture Framework is an object-oriented C++
library for solving partial differential equations
(PDEs) on serial and parallel architectures. It sup-
ports finite difference and finite volume computations
on a structured grid, or on a collection of struc-
tured grids. Collections of structured grids are used,
for example, in the method of composite overlap-
ping grids, with block-structured adaptive mesh re-
finement (AMR) algorithms, and for patched-based
domain decomposition methods. This paper con-
centrates on the implementation of support for the
method of composite overlapping grids (Chesshire
and Henshaw, 1990, Henshaw, 1996) which we use
for high-resolution simulations of incompresible and
low Mach number hydrodynamics flows in complex

moving geometries.

A composite overlapping grid consists of a set of
logically rectangular (in 2-D) or hexahedral (in 3-
D) curvlinear computational grids that overlap where
they meet and together are used to describe a compu-
tational region of arbitrary complexity. This method
has been a successful approach for solving problems
involving fluid flow in complex, often dynamically
moving, geometries (Brislawn et al. 1995, Brown
1994, Dougherty and Kuan 1989, Henshaw 1994,
Meakin 1997, Steger and Benek 1987).

The data structures associated with a flexible
overlapping grid solver can be quite complex. Math-
ematically, each component grid can be described in
terms of a transformation from the unit square or
cube to the coordinate space of that grid. In order
to complete the description of the computational ge-
ometry, the overall composite grid also requires in-
formation specifying how the component grids com-
municate with each other e.g. through interpolation
formulas. It is also possible for component grids to
move with respect to each other as part of a time-
dependent simulation. Thus, tools are required to
efficiently recompute the overlap information when
the grids move. In the discrete representation of such
a system, for each component grid, data such as the
location of the grid points, values of the transforma-
tion derivatives and volumes of the grid cells must
be stored. In addition, each grid point can have at-
tributes associated with it, such as whether it is used
for discretization of the PDE or a boundary condi-
tion, if it will have values interpolated to it from
another component grid, or possibly that it is not

*This work supported by the Mathematical, Information and Computational Sciences Division of the Office of Energy
Research in the U.S. Department of Energy and by the Mathematical, Computer and Information Sciences Division of the

Office of Naval Research in the United States Navy.



used at all. Information on where to find interpola-
tion stencils for the interpolation points must also be
stored.

The PDEs that are to be approximated can be
quite complex. The difference approximations that
are used can vary from relatively simple (e.g. cen-
tered second-order finite-difference methods) to quite
complex (e.g. unsplit Godunov procedures for com-
pressible or incompressible fluid flow (Brown 1994),
or fully fourth-order centered finite difference meth-
ods (Henshaw 1994). In addition, techniques such as
block structured AMR may be used to locally increase
computational resolution and increase overall compu-
tational efficiency. If the simulation is to run on a
parallel architecture, there are correspondingly more
complexities involved in writing the code. The net re-
sult of the data structures, advanced algorithms, and
modern architectures is a PDE solver code that is
an extremely complex system. Successfully writing,
debugging, modifying and maintaining software that
implements this complex system is a daunting if not
impossible task using a traditional structured pro-
gramming approach and procedural languages such
as Fortran or C.

An alternative to the traditional structured ap-
proach is to use object-oriented design principles and
object-oriented languages like C++ to write the code
(Booch 1994). With object-oriented design, the task
is to develop computational “objects” that represent
fundamental abstractions of elements in a computa-
tional model. Where in the structured approach, the
fundamental unit of code is a subroutine or function
that modifies the data in some way, in the object-
oriented approach the fundamental unit is an object,
described by a class in C++. A class contains both
a description of the data structures that describe the
object, as well as class member functions that op-
erate on that data. An example of an object for a
composite grid application is the composite grid it-
self. The class describing composite grids includes
a description of the data describing the grid as well
as functions that operate on that data. Examples
of such functions might be those that get or put the
data to a database file, add an adaptive mesh refine-
ment grid to the data structure, or return values of
parameters that describe properties of the grid.

Overture is an object-oriented framework that
supports applications of the type discussed above. It
has been used to develop a variety of PDE solvers that
use the composite overlapping grid method and sup-
port applications at Los Alamos. Among these are
solvers describing incompressible, nearly incompress-
ible and high-speed compressible fluid flow. Under
development at present are solvers for internal com-

bustion applications. The remainder of this paper
discusses details of this framework and presents some
computational examples.

OVERVIEW OF THE OVER-
TURE CLASSES

The main class categories that make up Overture are
as follows:

e Arrays describe multidimensional arrays using
A+4++/P++. A++ provides the serial array ob-
jects, and P++ provides the distribution and
interpretation of communication required for
their data parallel execution. (Quinlan 1995)

e Mappings define transformations such as
curves, surfaces, areas, and volumes. These are
used to represent the geometry of the compu-
tational domain.

e Grids define a discrete representation of a map-
ping or mappings. These include single grids,
and collections of grids; in particular composite
overlapping grids.

¢ Grid functions storage of solution values,
such as density, velocity, pressure, defined at
each point on the grid(s).

e Operators provide discrete representations of
differential operators and boundary conditions

e Plotting provides high-level plotting interface
based on OpenGL.

¢ Adaptive Mesh Refinement: The AMR++
library provides support for block-structured
adaptive mesh refinement.

e Load Balancing: The MLB load balancing
library is presented in (Quinlan and Berndt
1997)

Solvers for partial differential equations are written
using the above classes.

THE A++4+ AND P++ ARRAY
CLASSES

A++ and P++ (Quinlan 1995) are array class li-
braries for performing array operations in C++ in
serial and parallel environments, respectively. P++
is the principle mechanism by which the Quverture
Framework operates in parallel, there is little code



in Querture outside of P++ which is specific to par-
allel execution.

A++ is a serial array class library similar to FOR-
TRAN 90 in syntax, but not requiring any modifica-
tion to the C++ compiler or language. A++ provides
an object-oriented array abstraction specifically well
suited to large scale numerical computation. It pro-
vides efficient use of multidimensional array objects
which serves to both simplify the development of nu-
merical software and provide a basis for the develop-
ment of parallel array abstractions. P++ is the paral-
lel array class library and shares an identical interface
to A4+, providing a simple and elegant mechanism
that allows serial code to be reused in the parallel
environment.

Here is a simple example code segment that solves
Poisson’s equation with the Jacobi method in either
a serial or parallel environment using the A++ /P++
classes. Notice how the Jacobi iteration for the entire
array can be written in one statement.

// Solve u_xx + u_yy = f by a Jacobi Iteration

// ... define a range of indices: 0,1,2,...,n
Range R(O,n)

// ... declare two two-dimensional arrays
floatArray u(R,R), f£(R,R)

// ... initialize arrays and parameters
f=1.; u=0.; h=1./n;

// ... define ranges for the interior

Range I(1,n-1), J(1,n-1);

for (int iteration=0; iteration<100; iteration++)
// ... data parallel
u(Il,J) =
L26% (u(I+1,3)+u(I-1,J)+u(I,J+1)
+u(I,J-1)-£(I,J)*(h*h));

In this example, “Range” objects are first con-
structed using base, bound, and optional stride in-
formation. These are then used to build the array
objects and later to specify the indexing in the final
array statement. In a parallel environment, the “for”
loop is executed on all processors and the statement
representing the Jacobi relaxation step executes us-
ing an SPMD simulation of data parallel execution.
Communication requirements are interpreted at run-
time as required to permit the dynamic redistribution
of data (required for AMR applications).

MAPPINGS AND GRIDS

The geometry of the computational domain is defined
by a set of mappings, one mapping for each grid.
Mappings have been designed so that an object can
be easily moved by composing it with a transforma-
tion such as a translation, rotation or scaling. In gen-
eral, a mapping defines a transformation from R"™ to

R™. In particular, mappings can define lines, curves,
surfaces, volumes, rotations, coordinate stretchings ,
etc. The base class Mapping contains the data and
functions that apply to all mappings. Specific types
of mappings are derived from this base class. Map-
pings contain a variety of information and functions
that can be useful for grid generators and solvers. For
example, mappings contain information about their
domain space, range space, boundary conditions and
singularities. Mappings are easily composed, allowing
coordinate stretching, rotations, translations, bodies
of revolution, etc. The inverse of a mapping is always
defined, either analytically or by discrete approxima-
tion.

Grids define a discrete representation of a map-
ping. There are several main grid classes. The
MappedGrid class defines a grid for a single mapping
that contains, among other things, a mapping and a
mask array for cut-out regions. The GridCollection
class defines a collection of MappedGrid’s. The
CompositeGrid class defines a valid overlapping grid,
which is essentially a GridCollection plus interpo-
lation information. Grids contain many geometry ar-
rays such as grid points, Jacobians, normal vectors,
face areas and cell volumes.

GRID FUNCTIONS

Grid functions represent solution values at each point
on a grid or grid-collection. There is a grid func-
tion class (of float’s, int’s or double’s) corre-
sponding to each type of grid. So, for example, a
MappedGridFunction lives on a MappedGrid and a
CompositeGridFunction lives on a CompositeGrid.
Grid functions are defined with up to three coordinate
indices (i.e. up to three space dimensions) and up to
five component indices (i.e. they can be scalars, vec-
tors, matrices, 3-tensors,...). Since they are derived
from A++ arrays, all of the array operations are de-
fined. In the following example, a grid function is
made and assigned values at all points on the grid.

// ... create a mapping
SphereMapping sphere;
// ... the sphere mapping has been used to define a grid

MappedGrid mg (sphere);

// ... this function computes all the geometry arrays
mg.update() ;
// ...other grid function centerings can be

// ...specified through this class
GridFunctionParameters defaultCentering;

// ... create a grid fn with default centering and

// ... 2 components defined at all grid points
floatMappedGridFunction u(mg,defaultCentering,2);
Index I1,I2,I3;

// ... get Index’es for all grid points



getIndex(mg.dimension,I1,I2,I3);

// ... set x-component to sin(x)*cos(y)
const int xComp = 0, yComp = 1;
u(I1,I12,I13,xComp) = sin(mg.vertex(I1,I2,I3,xComp))
*cos(mg.vertex(I1,I2,I3,yComp));

Notice that when the floatMappedGridFunction
is declared, the number of grid points does not have
to be specified since this information is contained in
the MappedGrid.

OPERATORS

Operators define discrete approximations to differen-
tial operators and boundary conditions for grid func-
tions. Many different types of approximations can be
used. For example, the class MappedGridOperators
defines finite-difference style operators, while the
class MappedGridFiniteVolumeOperators defines
finite-volume style operators. Operator classes for
compressible and incompressible low Godunov meth-
ods have also been implemented. The Projection
class computes the divergence-free part of a velocity
function and is used in some of our incompressible
flow codes. Here is an example using one of the op-
erator classes:

MappedGrid mg(sphere);

// ...define operators for a MappedGrid
MappedGridFiniteVolumeOperators op(mg);
floatMappedGridFunction u(mg), v(mg);

// ...associate operators with grid fn.
u.setOperators (op);

// ...assign u some values
u=...
// ...compute gradient of u
v = u.grad();

// ...compute Laplacian(u)

v = u.laplacian();

// ...compute sparse matrix for the discrete Laplacian

v = op.laplacianCoefficients();

The result of the statement u.grad() is a grid
function containing the gradient of u. An equivalent
statement is op.grad (u). The matrix for the discrete
Laplacian holds the stencil at each grid point for the
Laplacian, and so is a grid function itself. This grid
function can be passed to a sparse solver, for example

BOUNDARY CONDITIONS

The programming model for boundary conditions is
to use ghost points (instead of one-sided difference
approximations). A library of elementary bound-
ary conditions such as Dirichlet, Neumann, extrap-
olation, etc has been defined. Solvers define more

complicated boundary conditions in terms of these
elementary ones. The interface is quite simple. For
example, the following statements set all components
of the velocity grid function v to zero on all bound-
aries of type “wall”.

floatCompositeGridFunction v;
v.applyBoundaryCondition
(allVelocityComponents, dirichlet, wall, ZERO);

A COMPLETE CODE

This example demonstrates the power of the Querture
Framework by showing a working code that solves the
incompressible Navier-Stokes equations in any num-
ber of space dimensions on an overlapping grid. It
is based on a cell-centered Projection method with
a two-stage Runge-Kutta time integrator. A rou-
tine to initialize the velocity, initializeVelocity,
and to initialize the Projection boundary conditions,
setProjectionBoundaryConditions, must also be
supplied to complete the code. PlotStuff is the
graphics package associated with Querture.

main ()
{

//...create composite grid
CompositeGrid cg;

//...read in from database (HDF) file
getFromADataBase (cg, "grid.hdf");
cg.update ();

// ... initialize interpolant
Interpolant interp (cg);

// ... initialize plotting
PlotStuff ps (TRUE);

// ... plot the grid
ps.plot (cg);

// ... velocities stored in q,qMid
int nComp = 2;
floatCompositeGridFunction q

initializeVelocity (vortexInBox, q, cg);
CompositeGridFiniteVolumeOperators op (cg);
q.setOperators (op);
gMid.setOperators (op);

// ... initialize Projection operator
Projection projection (cg);
setProjectionBoundaryConditions (projection);

// ... solve Incompressible Navier-Stokes equations
float t=0., dt=.0005, viscosity=.05;
int number0fSteps=100, frequencyOfOutput = 10;
for (int step=0; step < number(fSteps; step++)
{ //... forward Euler prediction

gMid = q + 0.5%dt*(-q.convectiveDerivative()

+ viscosity*q.laplacian());
applyVelocityBoundaryConditions (qMid);
// ... velocity projection
gMid = projection.project (qMid);
// ... midpoint rule prediction
q = q + dt*(-qMid.convectiveDerivative()

(cg, defaultCentering, nComp);
floatCompositeGridFunction gqMid (cg, defaultCentering, nComp);



+ viscosity*gMid.laplacian() );
applyVelocityBoundaryConditions (q);
// ... correct again with projection
q = projection.project (q);
// ... plot every so many timesteps
if (step % frequencyOfOutput == 0)
ps.streamLines (q);

NUMERICAL COMPUTA-
TION OF FLOW THROUGH
A VALVE

Figure 1 shows a computation of the incompress-
ible Navier-Stokes equations for flow through a three-
dimensional valve that is nearly closed. The over-
lapping grid is shown in Figure 2. The computa-
tion was done using an incompressible Navier-Stokes
solver written using the QOverture Framework. The
fluid is moving from the bottom to the top. The
pressure is plotted on the surface of the valve. The
flow speed is plotted on two planes that intersect the
computational region. The computational region is
cylindrically symmetric but no symmetry is used in
the computation.

SOFTWARE AVAILABILITY

The Overture Framework and documentation is
available for public distribution at the Web site
http://www.c3.lanl.gov/cic19/teams/napc/.
A++/P++ dates back to its first version in 1990
and has been publicly distributed since 1994; the
current version was released in 1996 (Quinlan 1996).
The Owerture libraries have been under development
since 1994, and have been available to the public
since 1996 (Brislawn et al. 1996). The AMR++
classes in Querture are still under development and
are expected to be released during 1998.

REFERENCES

Booch, G. 1994, Object-oriented analysis and design
with applications, Addison-Wesley, 2nd ed.

Brislawn, K. D., Brown, D. L., Chesshire, G. S., and
Quinlan, D. J. 1996, Overture code, Los Alamos Na-
tional Laboratory Computer Code LA-CC-96-04, Los
Alamos, NM.

Brown, D. L. 1994, “An unsplit Godunov method for
systems of conservation laws on curvilinear overlap-
ping grids”, Math. Comput. Modelling, 20: 29-48.

Chesshire, G. and Henshaw, W. D. 1990, “ Composite
overlapping meshes for the solution of partial differ-
ential equations”, J. Comp. Phys., 90: 1-64.

Henshaw, W. D., 1994, “ A fourth-order accurate
method for the incompressible Navier-Stokes equa-
tions on overlapping grids”, J. Comp. Phys., 113:
13-25.

Henshaw, W. D., 1996, Ogen: an overlapping grid
generator for Overture, LANL unclassified report 96-
3466, Los Alamos National Laboratory, Los Alamos,
NM.

Meakin, R. 1997, On adaptive refinement and over-
set structured grids, ATAA-97-1858-CP, 13th ATAA
Computational Fluid Dynamics Conf., Snowmass,
CO: 236-249 (June).

Quinlan, D., 1993, Adaptive Mesh Refinement for
Distributed Parallel Processors, PhD thesis, Univer-
sity of Colorado, Denver, CO (June).

Quinlan, D., 1995, A++/P++ manual, LANL Un-
classified Report 95-3273, Los Alamos National Lab-
oratory, Los Alamos, NM.

Quinlan, D., 1996, A++/P++ class libraries, LANL
Computer Code LA-CC-96-01, Los Alamos National
Laboratory, Los Alamos, NM.

Quinlan, D. and Berndt, M. 1997, MLB: Multi-level
load balancing, Proceedings of the STAM 1997 Con-
ference on Parallel Processing, Society for Industrial
and Applied Mathematics, Philadelphia, PA.

Steger, J. L. and Benek, J. A. 1987, “ On the use
of composite grid schemes in computational aero-
dynamics”, Computer Methods in Applied Mechanics
and Engineering, 64: 301-320.



Figure 1: Flow through a three-dimensional valve.

Figure 2:

CEEmED

I

Grid for a three-dimensional valve.



